jeudi 8 août 2013

CODING FOR DISEASE: GENES AND CANCER (2013)

CODING FOR DISEASE: GENES AND CANCER (2013)
Author: Marc Lacroix (InTextoResearch, Baelen, Wallonia, Belgium)
Nova Sciences Publishers
ISBN: 978-1-62257-817-7    
(also available as e-book - ISBN: 978-1-62618-780-1)





Book Description:

Cancer is characterized by uncontrolled cell division and the potential of the cells to invade surrounding tissues and spread around the body. Most of these changes in cellular behavior are the result of alterations in the function or levels of the proteins that control these processes. And these alterations are, in turn, usually caused by modifications at the DNA level. Indeed, cancer is now recognized as being essentially a disease caused by mutation, or dysregulated expression, of genes. Of the estimated 30,000 genes in the human genome, currently more than 250 are known to play an important role in the development of cancer, either sporadic or familial. In some cases, their effects result from gene fusion, due to translocation for instance, or from amplification of a chromosomal region. During the last years, attention has largely shifted from the identification of rare high-risk genetic mutations to a hunt for lower risk gene polymorphisms, many of which are likely to be common within the population. Another increasingly investigated field is epigenetics, which relates to abnormal and prolonged changes in the mechanisms that alter gene expression and activity, without involving changes in genetic sequence.


Table of Contents:

Preface
Chapter 1: A Detailed List of Major Cancer Genes
Chapter 2: Gene Fusions in Cancer
Chapter 3: Gene Amplification in Cancer
Chapter 4: Low Penetrance Sites in Cancer: Candidate Genes
Chapter 5: Familial Cancer Syndromes
Chapter 6: Epigenetics and Cancer



The Author:

Born in 1963, Marc Lacroix has been working on breast cancer in several academic institutions and at InTextoResearch, an agency devoted to scientific information on cancer. He authored four books: “Tumor Suppressor Genes in Breast Cancer” (2008), “Molecular Therapy of Breast Cancer: Classicism meets Modernity” (2009), “MicroRNAs in Breast Cancer” (2010) and “A Concise History of Breast Cancer” (2011 & 2013)



Index:

Chapter 1

ABL1 (v-abl Abelson murine leukemia viral oncogene homolog 1)
AKT1 (RAC-alpha serine/threonine-protein kinase)
AKT2 (v-akt murine thymoma viral oncogene homolog 2)
ALK (Anaplastic lymphoma receptor tyrosine kinase)
APC (Adenomatous polyposis coli)
ARID1A (AT rich interactive domain 1A)
ARID1B (AT rich interactive domain 1B)
ARID2 (AT rich interactive domain 2)
ASXL1 (Additional sex combs like 1)
ATM (Ataxia telangiectasia mutated)
BAP1 (BRCA1 associated protein-1)
BLM (Bloom syndrome, RecQ helicase-like)
BMPR1A (Bone morphogenetic protein receptor, type IA)
BRAF (v-raf murine sarcoma viral oncogene homolog B1)
BRCA1 (Breast cancer 1, early onset)
BRCA2 (Breast cancer 2, early onset)
BRIP1 (BRCA1 interacting protein C-terminal helicase 1)
BUB1B (Budding uninhibited by benzimidazoles 1 homolog beta)
CASP8 (Caspase 8, apoptosis-related cysteine peptidase)
CBFB (Core-binding factor, beta subunit)
CBL (Cas-Br-M (murine) ecotropic retroviral transforming sequence)
CDH1 (Cadherin 1, type 1, E-cadherin)
CDK4 (Cyclin-dependent kinase 4)
CDKN1B (Cyclin-dependent kinase inhibitor 1B)
CDKN2A (Cyclin-dependent kinase inhibitor 2A)
CEBPA (CCAAT/enhancer binding protein (C/EBP), alpha)
CHEK2 (CHK2 checkpoint homolog)
CTNNB1 (Catenin (cadherin-associated protein), beta 1, 88kDa)
CYLD (Cylindromatosis)
DDB2 (also known as XPE) (Damage-specific DNA binding protein 2)
DNMT3A (DNA (cytosine-5-)-methyltransferase 3 alpha)
EGFR (Epidermal growth factor receptor)
ERBB2 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog)
ERCC2 (also known as XPD) (Excision repair cross-complementing rodent repair deficiency, complementation group 2)
ERCC3 (also known as XPB) (Excision repair cross-complementing rodent repair deficiency, complementation group 3)
ERCC4 (also known as XPF) (Excision repair cross-complementing rodent repair deficiency, complementation group 4)
ERCC5 (also known as XPG) (Excision repair cross-complementing rodent repair deficiency, complementation group 5)

EXT1 (Exostosin-1)
EXT2 (Exostosin-2)
EZH2 (Enhancer of zeste homolog 2)
FAM123B (Family with sequence similarity 123B)
Fanconi Anemia pathway
FANCA (Fanconi anemia, complementation group A)
FANCB (Fanconi anemia, complementation group B)
FANCC (Fanconi anemia, complementation group C)
FANCD1 (also known as BRCA2) (Fanconi anemia, complementation group D1)
FANCD2 (Fanconi anemia, complementation group D2)
FANCE (Fanconi anemia, complementation group E)
FANCF (Fanconi anemia, complementation group F)
FANCG (Fanconi anemia, complementation group G)
FANCI (Fanconi anemia, complementation group I)
FANCJ (also known as BRIP1) (Fanconi anemia, complementation group J)
FANCL (Fanconi anemia, complementation group L)
FANCM (Fanconi anemia, complementation group M)
FBXW7 (F-box and WD repeat domain containing 7)
FGFR3 (Fibroblast growth factor receptor 3)
FH (Fumarate hydratase )
FLCN (Folliculin)
FLT3 (Fms-related tyrosine kinase 3)
FOXL2 (Forkhead box L2)
GATA1 (GATA binding protein 1)
GATA3 (GATA binding protein 3)
GNAQ (Guanine nucleotide binding protein (G protein), q polypeptide)
GNAS (GNAS complex locus)
HNF1A (HNF1 homeobox A)
HRAS (v-Ha-ras Harvey rat sarcoma viral oncogene homolog)
IDH1 (Isocitrate dehydrogenase 1)
IDH2 (Isocitrate dehydrogenase 2)
JAK2 (Janus kinase 2)
KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog)
KLF6 (Kruppel-like factor 6)
KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog)
MAP2K4 (Mitogen-activated protein kinase kinase 4)
MAP3K1 (Mitogen-activated protein kinase kinase kinase 1, E3 ubiquitin protein ligase)
MAP3K13 (Mitogen-activated protein kinase kinase kinase 13)
MEN1 (Multiple endocrine neoplasia I)
MLH1 (MutL homolog 1, colon cancer, nonpolyposis type 2)
MSH2 (MutS homolog 2, colon cancer, nonpolyposis type 1)
MSH6 (MutS homolog 6)
MPL (Myeloproliferative leukemia virus oncogene)
MUTYH (MutY homolog)
MYC (v-myc myelocytomatosis viral oncogene homolog)
NCOR1 (Nuclear receptor corepressor 1)
NF1 (Neurofibromin 1) & NF2 (Neurofibromin 2)
NOTCH1 (Notch 1)
NPM1 (Nucleophosmin 1)
NRAS (Neuroblastoma RAS viral (v-ras) oncogene homolog)
NTRK3 (Neurotrophic tyrosine kinase, receptor, type 3)
PALB2 (also known as FANCN) (Fanconi anemia, complementation group N)
PBRM1 (Polybromo 1)
PDGFRA (Platelet-derived growth factor receptor, alpha polypeptide)
PHOX2B (Paired-like homeobox 2b)
PIK3CA (Phosphoinositide-3-kinase, catalytic, alpha polypeptide)
PMS1 (PMS1 postmeiotic segregation increased 1)
PMS2 (PMS2 postmeiotic segregation increased 2)
POLH (also known as XPV) (Polymerase (DNA directed), eta)
Polycomb group (PcG) proteins
PPP2R1A (protein phosphatase 2, regulatory subunit A, α)
PRKAR1A (Protein kinase, cAMP-dependent, regulatory, type I, α)
PTCH1 (Patched 1)
PTEN (Phosphatase and tensin homolog)
PTPN11 (Protein tyrosine phosphatase, non-receptor type 11)
RAD51C (RAD51 homolog C)
RAD51C (also known as FANCO) (Fanconi anemia, complementation group O)
RB1 (Retinoblastoma 1)
RECQL4 (RecQ protein-like 4)
RET (Ret proto-oncogene)
RUNX1 (Runt-related transcription factor 1)
SDHA (Succinate dehydrogenase complex, subunit A, flavoprotein variant)
SDHAF2 (Succinate dehydrogenase complex assembly factor 2)
SDHB (Succinate dehydrogenase complex, subunit B, iron sulfur)
SDHC (Succinate dehydrogenase complex, subunit C, integral membrane protein, 15kDa)
SDHD (Succinate dehydrogenase complex, subunit D, integral membrane protein)
SETD2 (SET domain containing 2)
SF3B1  (Splicing factor 3b, subunit 1, 155kDa)
SMAD4 (SMAD family member 4)
SMO (Smoothened homolog)
SOCS1 (Suppressor of cytokine signaling 1)
STK11 (Serine/threonine kinase 11)
SUFU (Suppressor of fused homolog)
SWI/SNF complex components
SMARCA4 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4)
SMARCB1 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1) are the most frequently mutated.
TBX3 (T-box 3)
TET2 (Tet (ten-eleven-translocation) oncogene family member 2)
TMEM127 (Transmembrane protein 127)
TNFAIP3 (Tumor necrosis factor, alpha-induced protein 3)
TP53 (Tumor protein p53)
TSC1 (Tuberous sclerosis 1) & TSC2 (Tuberous sclerosis 2)
TSHR (Thyroid stimulating hormone receptor)
XPA (Xeroderma pigmentosum, complementation group A)
XPC (Xeroderma pigmentosum, complementation group C)
WRN (Werner syndrome, RecQ helicase-like)
WT1 (Wilms tumor 1)


Chapter 2

Balanced translocations and gene fusions
Deletions and gene fusions
Dicentric aberrations and gene fusions
Insertions and gene fusions
Inversions and gene fusions
Non-reciprocal translocations and gene fusions
Ring chromosome and gene fusions


Chapter 3

AKT2 (V-akt murine thymoma viral oncogene homolog 2)
AR (Androgen receptor)
ARPC1A (Actin related protein 2/3 complex, subunit 1A, 41kDa)
AURKA (Aurora kinase A)
BCL2L2 (BCL2-like 2)
CACNA1E (Calcium channel, voltage-dependent, R type, alpha 1E subunit)
CCND1 (Cyclin D1)
CCNE1 (Cyclin E1)
CDK4 (Cyclin-dependent kinase 4)
CDK6 (Cyclin-dependent kinase 6)
CHD1L (Chromodomain helicase DNA binding protein 1-like)
CKS1B (CDC28 protein kinase regulatory subunit 1B)
DCUN1D1 (DCN1, defective in cullin neddylation 1, domain containing 1)
DYRK2 (Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2)
E2F3  (E2F transcription factor 3)
EGFR (Epidermal growth factor receptor)
EIF5A2 (Eukaryotic translation initiation factor 5A2)
ERBB2 (V-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog)
FADD (Fas (TNFRSF6)-associated via death domain)
FGFR1 (Fibroblast growth factor receptor 1)
GATA6 (GATA binding protein 6)
GPC5 (Glypican 5)
GRB7 (Growth factor receptor-bound protein 7)
JUN (Jun proto-oncogene)
KIT (V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog)
MAP3K5 (Mitogen-activated protein kinase kinase kinase 5)
MDM2 (Mdm2, p53 E3 ubiquitin protein ligase homolog)
MDM4 (Mdm4 p53 binding protein homolog)
MED29 (Mediator complex subunit 29)
MET (Met proto-oncogene)
MITF (Microphthalmia-associated transcription factor)
MTDH (Metadherin)
MYC (V-myc myelocytomatosis viral oncogene homolog)
MYCL1 (V-myc myelocytomatosis viral oncogene homolog 1, lung carcinoma derived)
MYCN (V-myc myelocytomatosis viral related oncogene, neuroblastoma derived)
NCOA3 (Nuclear receptor coactivator 3)
NKX2-1 (NK2 homeobox 1)
NKX2-8 (NK2 homeobox 8)
PAK1 (P21 protein (Cdc42/Rac)-activated kinase 1)
PAX9 (Paired box 9)
PIK3CA (Phosphoinositide-3-kinase alpha polypeptide)
PPM1D (Protein phosphatase, Mg2+/Mn2+ dependent, 1D)
PRKCI            (Protein kinase C, iota)
RAB25 (RAB25, member RAS oncogene family)
REL (V-rel reticuloendotheliosis viral oncogene homolog)
RPS6KB1 (Ribosomal protein S6 kinase, 70kDa, polypeptide 1)
SKP2 (S-phase kinase-associated protein 2, E3 ubiquitin protein ligase)
SMURF1 (SMAD specific E3 ubiquitin protein ligase 1)
STARD3 (StAR-related lipid transfer (START) domain containing 3)
TSPAN31 (Tetraspanin 31)
WHSC1L1 (Wolf-Hirschhorn syndrome candidate 1-like 1)
YWHAB (Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta polypeptide)           
YWHAQ (Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, theta polypeptide)
YWHAZ (Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide)
ZNF217 (Zinc finger protein 217)
ZNF639 (Zinc finger protein 639)


Chapter 4

GWAS in bladder cancer
GWAS in breast cancer (BC)
GWAS in colorectal cancer (CRC)
GWAS in lung cancer (LC)
GWAS in cancer types other than bladder, breast, colorectal, esophageal, lung, prostate, and upper aerodigestive
GWAS in prostate cancer (PC)
GWAS in upper aerodigestive and esophageal cancers


Chapter 5

Ataxia Telangiectasia
Basal Cell Nevus Syndrome
Beckwith–Wiedemann Syndrome
Birt–Hogg–Dubé Syndrome
Bloom Syndrome
Carney Complex, Types I and II
Cowden Syndrome
Dyskeratosis Congenita
Familial Adenomatous Polyposis
Familial platelet disorder with predisposition to acute myelogenous leukemia
Fanconi Anemia
Hereditary Breast/Ovarian Cancer
Hereditary Diffuse Gastric Cancer
Hereditary Leiomyomatosis and Renal Cell Cancer
Hereditary Multiple Exostosis
Hereditary Nonpolyposis Colon Cancer
Hereditary Papillary Renal Cell Carcinoma
Hereditary paraganglioma-pheochromocytoma syndrome
Li–Fraumeni Syndrome, including Li-Fraumeni-Like Syndrome
Multiple Endocrine Neoplasia Type 1
Multiple Endocrine Neoplasia Type 2A, 2B
MYH-Associated Polyposis
Neurofibromatosis Type 1
Neurofibromatosis Type 2
Nijmegen Breakage Syndrome
Peutz–Jeghers Syndrome
Polyposis, Familial Juvenile
Retinoblastoma, Hereditary
Rhabdoid Tumor Predisposition Syndrome
Rothmund–Thomson Syndrome
Shwachman-Bodian-Diamond Syndrome
Simpson–Golabi–Behmel Syndrome
Tuberous Sclerosis Complex
Variegated Aneuploidy, Mosaic
Von Hippel–Lindau Syndrome
Werner Syndrome
Wilms Tumor, Familial
Xeroderma Pigmentosum


Chapter 6

Cancer mutations in histone genes
Chromatin remodelers
DNA Hydroxy-Methylation and Its Oxidation Derivatives
DNA Methylation:
Histone acetylation
Histone acetylation readers
Histone demethylation
Histone desacetylation
Histone methylation
Histone methylation readers
Histone modifications
Histone phosphorylation
Noncoding RNAs


            

vendredi 2 août 2013

Press Review (August 3, 2013) – Revue de presse (3 août 2013)





How do we talk about cancer?
Knowing whether to say 'how are you?' or mention 'bravery' is one problem, another is our society in which death is a taboo.
By Mike Marqusee. In The Guardian

Research hope for bladder cancer.
Bladder cancer is a common condition – an estimated 10,000 people are diagnosed with the disease each year in the UK. It is the seventh most common cancer in the UK, affecting men more than women..
In MedicalXpress                                              

Almost all UK men with testicular cancer now survive
With 96% living at least another 10 years, curing the disease is 'almost a reality', says Cancer Research chief.
In The Guardian                                                 

Scientists discover a molecular 'switch' in cancers of the testis and ovary
Research could lead to new drugs to turn 'switch' off.
In EurekAlert (press release)                            

How to get healthy after the cancer treatments are done
Researchers believe the protein could help improve immunotherapy treatments.
By Christie Aschwanden. In Washington Post

Cancer : une stratégie pour affamer les tumeurs
Les cellules tumorales, qui se divisent rapidement, ont de gros besoins en nutriments et peinent à les trouver. Une équipe britannique vient de découvrir comment elles s'adaptent à ce stress nutritionnel permanent. Ce mécanisme, bâti autour de la protéine EEF2K, pourrait devenir la cible de traitements qui feraient mourir de faim les cellules cancéreuses.
Par Agnès Roux. Dans Futura Sciences

Des cancers du poumon liés à la pollution atmosphérique
Le cancer du fumeur pourrait aussi être lié à la pollution atmosphérique. Bien que le tabac reste le principal facteur de risque de cancer du poumon, une vaste étude vient de montrer que les microparticules retrouvées dans l’air ambiant étaient fortement associées au développement de tumeurs pulmonaires.
Par Janlou Chaput. Dans Futura Sciences